

DEMO WORKSHOP BRAINPORT 2020

AUTORIDAD PORTUARIA BAHÍA DE ALGECIRAS

19 de Octubre de 2016

MODELO HIDRODINÁMICO DE ALTA RESOLUCIÓN EN EL PUERTO DE LA BAHÍA DE ALGECIRAS

SIMONE SAMMARTINO
JOSÉ CARLOS SÁNCHEZ GARRIDO
CRISTINA NARANJO
JESÚS GARCÍA LAFUENTE

Physical Oceanography Group (GOFIMA), University of Málaga

- Water quality assessment
 - Passive tracers
 - Particle tracking

REGIONAL DOMAIN GOFIMA-SAMPA

GOFIMA-SAMPA: MITgcm (Massachusetts Institute of Technology General Circulation Model)

• Curvilinear grid: 360 x 96

Vertical levels: 46

Total nodes: 1.589.760 nodes

• Horiz. Resolution (Strait of Gibraltar – Bay of Algeciras): ~ 400m

NESTED DOMAINS: FIRST DOWNSCALING - MIDDLE RESOLUTION

BAMR: MITgcm (Massachusetts Institute of Technology General Circulation Model)

Downscaling:

1:4

Curvilinear grid:

95 x 88 cells

Vertical levels:

35

Total nodes:

292.600 nodes

Horiz. resolution:

120-150 m

GOFIMA-SAMPA

BAMR

NESTED DOMAINS: SECOND DOWNSCALING - HIGH RESOLUTION

BAHR: MITgcm (Massachusetts Institute of Technology General Circulation Model)

Downscaling:

1:5

Curvilinear grid:

312 x 160 cells

Vertical levels:

35

Total nodes:

1.747.200 nodes

Horiz. resolution:

20-30 m

BAMR

BAHR

SAMPA 2

SISTEMA AUTÓNOMO DE MEDICIÓN, PREDICCIÓN Y ALERTA ESQUEMA FUNCIONAL MODO OPERACIONAL

VALIDATION: CENTER OF THE BAY

VALIDATION: PORT AREA

Marked improvement of the solutions in shallower areas of the Bay for BAHR

BAY OF ALGECIRAS: GENERAL CIRCULATION SCHEME

WATER QUALITY ASSESSMENT

PASSIVE TRACERS

- Eulerian approach
- Online working
- TARGET: fill the bay with a pollutant and model its advection/diffusion

PARTICLES TRACKING

- Lagrangian approach
- Offline working
- TARGET: fill the bay with particles and model their advection

WATER QUALITY ASSESSMENT - PASSIVE TRACER

WATER QUALITY ASSESSMENT — HARMONIC ANALYSIS

WATER QUALITY ASSESSMENT — HARMONIC ANALYSIS

Port area
One in 3 points!

- Strongest bidirectionality and highest current speed (~20 cm/s) through the Isla Verde and Dique Exento channel
- Quite stagnant areas in Darsena
 Norte and Darsena Pesquera

Seed area: whole bay

- Trajectories follow the coast contour
- Much higher transit
 along the lateral
 flanks than at the
 entrance

Seed area: whole bay

- Higher dynamics in Darsena
 Pesquera and Isla Verde Dique
 Exento channel
- Poor renewal in Darsena Norte
- Higher transit over the western margins

WATER QUALITY ASSESSMENT - BAY OF ALGECIRAS OIL SPILL

WATER QUALITY ASSESSMENT - BAY OF ALGECIRAS OIL SPILL

NO wind